Tài nguyên Thư viện

Thành viên trực tuyến

5 khách và 0 thành viên

Thống kê

  • truy cập   (chi tiết)
    trong hôm nay
  • lượt xem
    trong hôm nay
  • thành viên
  • Menu Thư viện

    Ứng dụng phương pháp Quy nạp toán học

    Wait
    • Begin_button
    • Prev_button
    • Play_button
    • Stop_button
    • Next_button
    • End_button
    • 0 / 0
    • Loading_status
    Nhấn vào đây để tải về
    Báo tài liệu có sai sót
    Nhắn tin cho tác giả
    (Tài liệu chưa được thẩm định)
    Nguồn:
    Người gửi: Trần Trung (trang riêng)
    Ngày gửi: 17h:54' 10-12-2009
    Dung lượng: 8.2 KB
    Số lượt tải: 134
    Số lượt thích: 0 người
    Ứng dụng phương pháp quy nạp toán học
    Nguyễn Duy Khương
    Trong toán học, quy nạp là một phương pháp đơn giản nhưng hiệu quả để chứng minh các bài toán. Ở bài viết này tôi xin đưa ra một ứng dụng nhỏ của nó trong việc giải các bài toán tin học:
    1. Thuật toán quy nạp quy nạp(nhắc lại):
    Giả sử có bài toán F cần chứng minh đúng với mọi n  N. Ta chứng minh bài toán đúng bằng cách quy nạp, cần tiến hành các bước sau: - n = 1: mệnh đề cần chứng minh đúng. - Giả sử n = k: mệnh đề cần chứng minh đúng. - n = k + 1: ta cần chứng nó cũng đúng. Vậy theo nguyên lý quy nạp bài toán đúng với mọi N. Trong tin học, thuật toán nay cũng được áp dụng. Tuy thuật toán đơn giản nhưng nó lại được áp dụng một cách rất linh động và khéo léo trong các bài toán tin. 2. Phát biểu bài toán tổng quát giải bằng quy nạp: Thông thường bài toán giải bằng quy nạp không phải là một bài toán tối ưu hoá. Nó chỉ đơn giản là bài toán cần chỉ ra cách biến đổi theo quy luật cho trước để thu được kết quả mong đợi. Và bài toán đó thường được phát biểu như sau:Cho N đối tượng và một số thao tác biến đổi. Yêu cầu sử dụng các thao tác biến đổi để thu được kết mong đợi. Cách làm thông thường: - Nếu n = 0; 1: ta luôn có cách biến đổi đúng. - Nếu có n > 1 mà ta luôn chỉ ra một cách biến đổi sao cho giản bớt được số đối tượng mà điều kiện bài toán vẫn không thay đổi. - Như vậy vì số đối tượng trong một bài toán tin học luôn là hữu hạn nên sau một số hữu hạn bước thì số lượng đối tương bằng 1 hoặc 0. Suy ra bài toán được giải quyết một cách hoàn toàn.
    3. Các ví dụ cụ thể: P1. Cho N vecto v1, v2, …, vn độ dài nhỏ hơn L cho trước. Cần đặt trước các vecto một dấu cộng hoặc trừ sao cho vecto tổng thu được có độ dài nhỏ hơn căn 2 nhân L.Input: Segment.In - Dòng đầu ghi số N ( 1 < N ≤ 10000) và L (0 < L ≤ 15000.00) - N dòng tiếp theo mỗi dòng ghi một cặp số xi, yi là toạ độ của vecto thứ i. (|xi|, |yi| ≤ 10000). Ouput: Segment.out - Dòng thứ nhất ghi YES nó có thể đặt các dấu cộng trừ thoả mãn yêu cầu bài toán, NO trong trường hợp ngược lại. - Nếu là YES dòng thứ hai ghi N kí tự cộng hoặc trừ cần đặt trước các vecto sao cho tổng vecto nhỏ hơn sprt(2)*L. Ví dụ:
    
    Thuật giải: - n = 1 bài toán đã đúng. - n = 2 có trường hợp xảy ra với hai vecto: + góc giữa hai vecto nhỏ hơn 90 độ, lấy vecto 1 trừ cho vecto 2 lúc đó ta thu được 1 vecto co độ dài nhỏ hơn sqrt(2) * L. + góc giữa hai vecto lớn hơn hoặc bài một 90 độ, lấy vecto 1 cộng cho vecto 2 lúc đó ta thu được 1 vecto có độ dài nhỏ hơn sqrt(2) * L. - n ≥ 3 suy ra luôn có 2 vecto mà góc giữa hai phương của vecto nhỏ hơn hoặc 60 bằng độ có hai trường xảy ra: + góc giữa hai vecto đó nhỏ hơn hoặc bằng 60 độ, trừ vecto 1 cho vecto 2 thay hai vecto bằng vecto mới nhận được. + góc giữa hai vecto đó lớn hơn hoặc bằng 120 độ, cộng vecto 1 cho vecto 2 thay hai vecto bằng vecto mới nhận được. Lưu ý sau này nếu trừ vecto mới nhận được phải trừ (đổi dấu) toàn vecto bộ hình thành lên nó, vecto mới nhận được có độ dài nhỏ hơn L, số đoạn thẳng giảm 1. Như vậy đây là bài toán luôn có lời giải, độ phức tạp O(N^2) nếu xử lý khéo có thể giản xuống O(n*log(n)). Chương trình mô tả thuật giải: Procedure Xuly (n: integer //* số đối tượng *//); Begin If n <= 1 then exit else If n = 2 then Begin If goc (v1, v2) <= 90 độ Then đổi dấu (v2); //* đổi dấu tức là đổi dấu toàn bộ vecto thành phần *// Thay hai vecto bằng 1 vecto (v1 + v2); //* vecto mới gồm các thành phần của v1 và v2 *// //* lúc này v2 nếu cần thiết đã đổi dấu rồi *// Exit; End else Begin lấy 3 vecto bất kỳ; chọn ra được 2 vecto v1, v2 sao cho góc nhỏ
     
    Gửi ý kiến

    ↓ CHÚ Ý: Bài giảng này được nén lại dưới dạng RAR và có thể chứa nhiều file. Hệ thống chỉ hiển thị 1 file trong số đó, đề nghị các thầy cô KIỂM TRA KỸ TRƯỚC KHI NHẬN XÉT  ↓